Landsat Radiometric Calibration

Presenter: B. L. Markham

Landsat Calibration Scientist

Objectives

- Working with USGS, insure the scientific integrity of the Landsat data
 - Radiometric characterization and calibration
 - Consistency of calibration of data products over life of missions
 - Landsat 7 ETM+, Landsat-5 TM ongoing
 - Landsat 4, 5 TM historical

Approach

- Team Effort
 - USGS
 - IAS (operational calibration, systematic trending, analyses)
 - L7 ETM+ (IAS in production since launch)
 - L5 TM (TMIAS in development with SDSU)
 - NASA
 - LPSO (radiometric analyses and calibration, research and development)
 - LCLUC calibration team/vicarious team
 - University of Arizona (Thome) reflective
 - JPL (Palluconi/Hook) thermal
 - Rochester Institute of Technology (Schott)- thermal, historical
 - South Dakota State University (Helder) reflective, characterization, historical

LPSO Calibration Personnel

- B. L. Markham
- J. L. Barker
- J. Sun
- J. Miller
- J. Barsi
- E. Kaita

Highlights

- Landsat-7 ETM+ reflective bands very stable, trends on order of 0.3%/year
- Landsat-7 ETM+ thermal band very stable-no significant gain change with time
 - 1K (1 σ) scatter relative to ground measurements
 - SLC failure may have introduced bias (<1K)
- Landsat-5 TM reflective band calibration procedure has been updated
 - Now internally consistent and cross calibrated with Landsat-7 ETM+
- Landsat-5 TM thermal band data generally well calibrated
 - has greater scatter than ETM+ relative to ground measurements ~2K
 - May be some calibration sensitivity to instrument temperature
 - Possible cause for poorly calibrated data determined
- Landsat-4 TM calibration reconstruction in progress
- Special issue of TGARS on Landsat geometric and radiometric performance in preparation for December 2004

Landsat-7 ETM+

- Recurring activities
 - ETM+ calibration monitoring
 - Reflective
 - On-board calibration trending
 - Vicarious calibration trending
 - Integrated results
 - Thermal
 - On board calibration trending
 - Vicarious calibration results

Landsat-7 ETM+ Band 1 On-Board Calibrator Results

Landsat-7 ETM+ Band 1 Vicarious calibration results

Current "Best" Estimates of ETM+ Gain Changes

Band	Weighted Average Slope		Weighted Average Slope		Statistical
	(Gain/yr)		Uncertainty (Gain/yr)		Significance
	Absolute	Relative	Absolute	Relative	t-Value
	[High Gain]	(% of Pre-	[High Gain]	(% of Pre-	
	$(W/m^2 \operatorname{sr} \mu m)$	launch)	$(W/m^2 \operatorname{sr} \mu m)$	launch)	
1	-2E-03	-0.2	1E-03	-0.1	1.4
2	-4E-03	-0.3	1E-03	-0.1	2.6
3	-3E-03	-0.2	2E-03	-0.1	2.0
4	-OE-O3	-0.0	2E-03	-0.2	0.2
5	-4E-02	-0.5	9E-03	-0.1	4.4
7	-9 E-02	-0.4	4E-02	-0.2	2.4
8*	-4E-03	-0.4	2E-03	-0.2	2.3

Landsat-7 ETM+ Thermal Band Vicarious Calibration

remaining RMS 0.13 W/m²/sr/μm or 1.0 K

L7 ETM+ Special Studies/Algorithm Development

- Algorithms to improve usability of on-board calibration systems
 - Internal Calibrator
 - Environmental sensitivities
 - Warm-up
 - Temperature, current
 - Full Aperture Solar Calibrator
 - Degradation models

ETM+ Band 2 Raw Internal Calibrator Responses

Raw Level-OR Band-2 Reference Detector-12 Scene-Averaged Landsat-7 ETM+ *Clean IAS & LPGS Lamp-1 Net Internal Calibrator (IC) Pulse

ETM+ Band 2 Merged, and Filtered IC Responses

Raw Band-2 Reference Detector-12 Scene-Averaged Merged Gain Landsat-7 ETM+ *Clean IAS & LPGS Lamp-1 Net Internal Calibrator (IC) Pulse Filtered for t_on > 7 minutes for Current Equilibration

ETM+ Band 2 Temperature Smoothed IC Responses

Raw Band-2 Reference Detector-12 Merged Equilibrated (t_on > 10 minutes)

Temperature-Smoothed *Clean IAS & LPGS Lamp-1 Net IC Pulse

9-Day Traveling Average Sampled Every Day

ETM+ Band 2 IC Temperature Sensitivity

MUX Electronics Temperature-Dependence of Raw Band-2 Reference Detector-12 Scene-Averaged Merged *Clean EDC/IAS & LPGS Resampled Net IC Pulse

Landsat-5 TM Reflective Band Calibration Reconstruction

- Best internal lamp data modeled
- Initial degradation deemed real instrument effect; later increase a Lamp effect
- Outgassing effects modeled for SWIR bands
- Model tied to Landsat-7 cross calibration
- Compared to vicarious calibrations
- Compared to invariant sites
- Daily band average gain values entered into processing file
- Updated calibration processing implemented May 2003 at EDC

Landsat-5 TM Lifetime Gain Modeling

Comparison to Vicarious Calibration Data

NASA HQ Site Visit March 17, 2004

18

Improved Landsat-5 TM Calibration

Future Plans

- Resolve thermal band calibration issues
- Complete Landsat-4 TM calibration reconstruction
- Continue special studies/algorithm development to improve calibrator usability
- Maintain radiometric calibration oversight
- Continue transition of personnel to LDCM
- Continue vicarious calibration activities

Back-up Slides

Highlights

- Landsat 7 ETM+
 - Recurring Activities
 - Special Studies
- Landsat 4/5 TM
 - L5 TM Calibration Reconstruction
 - Absolute
 - Thermal
 - L4 TM Analyses Status

ETM+ Thermal Band gains - Internal Calibrator based

• Gain

- slope change per year: $0.01\% \pm 0.01$

Offset

- slope change per year $-0.03\% \pm 0.02$

(10-Jun-03 = 1516 days since launch)

ETM+ Thermal Band Calibration

- Pre-SLC off operation, ~1K RMS scatter, no apparent bias
- Post-SLC off operation, ~1K bias (high) relative to JPL data, RIT data not initially consistent
- Flaw found in CPF coefficients for ETM+ thermistor calibration--caused most of initial bias in ETM+ thermal cal since corrected
 - Unclear if any impact on SLC off calibration bias

In-Situ vs Image Derived At Sensor Radiance For ETM+ Band 6 For 7 Dates From 9 June Thru 2 December 2003 For Lake Tahoe Rafts

Percent Radiance Difference Versus Image At Sensor Radiance For ETM+ Band 6 For 7 Dates From 9 June Thru 02 December 2003 For Lake Tahoe Rafts

Landsat-5 Thermal Band Internal Calibrator Gains

(10-Dec-03 = 19.77 years since launch)
NASA HQ Site Visit
March 17, 2004
NLAPS data
LPSO/Barsi

27

L5 Thermal Band Vicarious Calibrations

Landsat-5 TM Trended Shutter Temperature

Shutter temperature vs. calibration delta-L

NASA HQ Site Visit March 17, 2004

JPL/RIT data LPSO/Barsi

30

Shutter temperature vs. calibration delta-L with New JPL Tahoe Data

Landsat-4 TM Calibration Reconstruction Status

- Internal Calibrator data examined
- Outgassing Model Developed
- Results complicated by several year hiatus in L4 TM data collection (1983-1987)
- Cross calibration to L5 TM complicated by limited data and 8-day offset

Summary

- Landsat-7 ETM+ Reflective bands very stable, trends on order of 0.3%/year
- Landsat-7 ETM+ thermal band very stable-no significant gain change with time
 - SLC failure may have introduced bias (<1K)
- Landsat-5 TM reflective band calibration procedure has been updated
 - Now internally consistent and cross calibrated with Landsat-7 ETM+
- Landsat-5 TM thermal band has greater scatter relative to ground measurements-- circa 2K relative to 1K for ETM+
- Landsat-4 TM calibration reconstruction in progress

